Nanotechnologie

Forscher entwickeln Transistor aus Graphen-Nanobändern

Quelle: Foto: Rost9 / shutterstock.com
30.11.2017
Einem internationalen Forscherteam mit Beteiligung des Max-Planck-Instituts für Polymerforschung ist es gelungen, Nanotransistoren aus nur wenigen Atomen breiten Graphenbändern zu produzieren.
Forschung für die Nanotechnologie der Zukunft: Nur wenige Atome breite Graphenbänder, sogenannte Graphen-Nanoribbons, haben spezielle elektrische Eigenschaften, die sie zu viel versprechenden Kandidaten für die Nanoelektronik der Zukunft machen: Während Graphen – eine nur ein Atom dünne, bienenwabenförmige Kohlenstoffschicht – ein leitendes Material ist, kann es in Form von Nanobändern zum Halbleiter werden. Das bedeutet, es hat eine genügend große Energie- oder Bandlücke, in der keine elektronischen Zustände möglich sind: Dadurch lässt es sich an- und abschalten – und wird so möglicherweise zu einem zentralen Bestandteil von Nanotransistoren.
So sieht die Struktur der Nanographenbänder aus.
Quelle: (Quelle: empa.ch )
Kleinste Details in der atomaren Struktur dieser Graphenbänder haben allerdings massive Auswirkungen auf die Größe der Energielücke – und damit darauf, wie gut sich die Nanoribbons als Bestandteile von Transistoren eignen. Die Größe der Lücke hängt einerseits von der Breite der Graphenbänder ab, andererseits von der Struktur der Ränder. Da Graphen aus gleichseitigen Kohlenstoff-Sechsecken besteht, kann der Rand je nach Ausrichtung der Bänder eine Zickzack- oder eine so genannte Sessel-Form ("armchair") aufweisen. Während sich Bänder mit Zickzackrand wie Metalle verhalten – also leitend sind –, werden sie mit einem Sesselrand zum Halbleiter.
Das bedeutet eine große Herausforderung für die Herstellung der Nanoribbons: Werden die Bänder aus einer Schicht Graphen herausgeschnitten oder hergestellt, indem man Kohlenstoff-Nanoröhrchen aufschneidet, kann es sein, dass die Ränder unregelmäßig sind – und somit die Graphenbänder nicht die gewünschten elektrischen Eigenschaften zeigen.

Mit neun Atomen zum Halbleiter

Forschern des Max-Planck-Institutes für Polymerforschung in Mainz ist es nun in Zusammenarbeit mit dem Schweizer Forschungsinstitutes Empa und der "University of California" in Berkeley gelungen, Bänder von exakt neun Atomen Breite und einem regelmäßigen Sesselrand aus Vorläufermolekülen wachsen zu lassen. Dafür werden die speziell angefertigten Moleküle im Ultrahochvakuum verdampft. Wie Puzzlestücke fügen sie sich nach mehreren Verfahrensstufen auf einer Goldunterlage zu den gewünschten Nanoribbons von rund einem Nanometer Breite und bis zu 50 Nanometern Länge zusammen.
Diese Strukturen, die nur mit einem Rastertunnelmikroskop erkennbar sind, haben nun eine relativ große und vor allem eine genau definierte Energielücke. Damit konnten die Forscher nun einen Schritt weiter gehen und die Graphenbänder in Nanotransistoren integrieren. Die ersten Versuche waren zunächst aber noch wenig erfolgreich: Messungen zeigten, dass der Unterschied im Stromfluss zwischen dem "EIN"-Zustand (also bei angelegter Spannung) und dem "AUS"-Zustand (ohne angelegte Spannung) viel zu gering war. Das Problem lag bei der dielektrischen Schicht aus Siliziumoxid, die die halbleitenden Schichten mit dem elektrischen Schalterkontakt verbindet: Um die gewünschten Eigenschaften aufzuweisen, musste diese 50 Nanometer dick sein – und das wiederum beeinflusste das Verhalten der Elektronen.
Den Forschern gelang es in der Folge jedoch, diese Schicht massiv zu verkleinern, indem sie als dielektrisches Material anstelle von Siliziumoxid Hafniumoxid (HfO2) verwendeten. Damit ist die Schicht gerade noch 1.5 Nanometer dünn – und der Strom bei "eingeschaltetem" Transistor um Zehnerpotenzen höher.
Ein weiteres Problem lag im "Einbau" der Graphenbänder in den Transistor; künftig sollen die Bänder nicht mehr kreuz und quer auf dem Transistor-Substrat liegen, sondern exakt senkrecht zum Transistorkanal ausgerichtet werden. Dadurch ließe sich der derzeit hohe Ausschuss an nicht funktionierenden Nanotransistoren erheblich reduzieren.

Autor(in)

Das könnte sie auch interessieren
Bad News
Game macht Fake News spielerisch erkennbar
Salzbatterie
Neuer Super-Akku lädt in wenigen Sekunden
Cold Cases
Fingerabdrücke lassen sich auf Drogen testen
Huawei Roadshow 2024
Technologie auf Rädern - der Show-Truck von Huawei ist unterwegs
Mehr News?
Besuchen Sie unsere Seite ...
https://www.com-magazin.de
nach oben