Mit KI zu neuen Arzneistoffen

Wirkung gut, günstige Alternative noch besser

von - 13.07.2021
Damit war die Arbeit von Schneiders Forschungsgruppe aber noch nicht zu Ende. Wenn aus den Erkenntnissen zu den Wirkungszielen von Marinopyrrol A in Zukunft ein nützliches Medikament entstehen soll, muss auch ein einfach herstellbares Molekül gefunden werden. Marinopyrrol A hat nämlich – wie viele andere Naturstoffe – einen relativ komplizierten Aufbau. Die Laborsynthese ist darum aufwendig und teuer.
Für die Suche nach einer einfacheren, wirkungsgleichen chemischen Verbindung nutzen die ETH-​Forschenden einen weiteren von ihnen entwickelten Algorithmus. Die Vorgabe an dieses KI-​Programm lautete, dass es als «virtueller Chemiker» Moleküle finden muss, die trotz einer anderen Struktur vergleichbare chemische Funktionalitäten aufweisen wie das Naturvorbild. Gemäss der Vorgabe an de Algorithmus müssen sich zudem die Moleküle in höchstens drei Syntheseschritten und damit vergleichsweise einfach und günstig herstellen lassen.

Neue chemische Strukturen mit gleicher Wirkung

Um den Syntheseweg festzulegen, standen der Software ein Katalog von über 200 Ausgangsstoffen, 25'000 käuflichen chemischen Bausteinen und 58 etablierte Reaktionsschemen zur Verfügung. Nach jedem Reaktionsschritt wählte das Programm als Ausgangsmaterial für den nächsten Schritt jeweils diejenigen Varianten aus, welche die grössten funktionellen Übereinstimmungen mit Marinopyrrol A aufwiesen.
Insgesamt fand der Algorithmus so 802 passende Moleküle, die auf 334 unterschiedlichen Grundstrukturen basierten. Die besten vier stellten die Forschenden im Labor her, und diese zeigten auch tatsächlich eine sehr ähnliche Aktivität wie das Vorbild aus der Natur. Sie wirkten auf sieben der acht durch den Algorithmus identifizierten Zielproteine vergleichbar.
Die Forschenden untersuchten daraufhin das erfolgversprechendste Molekül detailliert. Röntgenstrukturanalysen zeigten, dass sich die berechnete Verbindung ähnlich an das aktive Zentrum eines Zielproteins heftet wie bereits bekannte Hemmstoffe dieses Enzyms. Trotz seines unterschiedlichen Aufbaus hat das durch die KI gefundene Molekül also den gleichen Wirkungsmechanismus.

Auswirkungen auf pharmazeutische Forschung

«Unsere Arbeit belegt, dass sich mit KI-​Algorithmen gezielt wirkungsgleiche, aber einfacher aufgebaute Wirkstoffe entwerfen lassen», bilanziert ETH-​Professor Schneider. «Dies hilft auf der einen Seite, neue Medikamente zu entwickeln. Auf der anderen Seite stehen wir damit aber auch am Anfang eines möglicherweise fundamentalen Wandels in der medizinisch-​chemischen Forschung.» Mit den KI-​Methoden der ETH-​Forschungsgruppe lassen sich nämlich genauso wirkungsgleiche, aber auf unterschiedlichen Strukturen beruhende Alternativen zu bestehenden Medikamenten finden.
Dadurch könnte es in Zukunft leichter werden, neue patentfreie Molekülstrukturen zu entwerfen. Die Frage, inwieweit KI zur systematischen Umgehung eines Patentschutzes verwendet werden könnte, wird aktuell genauso intensiv diskutiert, wie eine mögliche Patentierung von Molekülen, die eine «kreative» KI entworfen hat. Die Pharmaindustrie wird ihren Forschungsansatz an die neuen Spielregeln anpassen müssen.
Hinweis: Dieser Artikel ist zuerst bei «ETH-News» erschienen.
Verwandte Themen